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ON THE LOCAL CONVERGENCE OF QUASI-NEWTON METHODS
FOR CONSTRAINED OPTIMIZATION*

PAUL T. BOGGS+, JON W. TOLLE AND PYNG WANG#

Abstract. We consider the application of a general class of quasi-Newton methods to the solution of the
classical equality constrained nonlinear optimization problem. Specifically, we develop necessary and
sufficient conditions for the Q-superlinear convergence of such methods and present a companion linear
convergence theorem. The essential conditions relate to the manner in which the Hessian of the Lagrangian
function is approximated.

1. Introduction. In this paper we consider means of solving the equality con-
strained nonlinear optimization problem

Minimize f(x)
(NLP) ’
subject to g(x) =0,

where it is assumed that f:R" - R and g:R" - R™ are smooth functions.

After two decades of experimentation with penalty function techniques, aug-
mented Lagrangian functions, gradient projection methods and other procedures, ]
research on numerical methods for solving NLP has recently centered on implementing
some form of a quasi-Newton technique for this constrained problem. The preeminence
of quasi-Newton methods for solving unconstrained nonlinear problems and good
experimental results to date lead one to believe that this approach is sound. However,
there remain numerous guestions concerning convergence, rates of convergence,
update formulas, and implementation that are as yet unanswered. It is the purpose
of this paper to shed light on some of these questions, in particular, on the local and
Q-superlinear convergence of these methods.

We define a quasi-Newton method for NLP as an iterative scheme which generates
sequences {x*}, {A*}, and {B.} from formulas

(1.1) A¥T = Ak, A% By,

(1.2) Bidt =~ (x* A",

(1.3) = x* v a8k,

(1.4) B =Bt x5 a5 28, By,

where x° A° and B, are given, A and ® are appropriate update functions and
I(x,A) = f(x)+A"g(x) is the standard Lagrangian function. The step lengths a* are
obviously important, but for local convergence theory a* =1 is the optimal choice
and a* will be taken to have this value throughout.

* Received by the editors February 6, 1980 and in final revised form March 27, 1981. This work was
supported in part by the U.S. Army Research Office under grant DAAG29-79-G0014.

+US. Army Research Office. Research Triangle Park, North Carofina 27709 and Curriculum in
Operations Rescarch and Systems Analysis, University of North Carolina, Chapel Hill, North Carotina
27514,

1 Department of Mathematics and Curriculum in Operations Research and Systems Analysis, University
of North Carolina, Chapel Hill, North Carolina 27514.

% Bell Laboratories, Whippany, New Jersey 07981.
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Much of the recent work on quasi-Newton methods for NLP can be put into this
framework. Powell {8], [9], following the work of Han [6], obtains &5 by solving a
quadratic program

Minimize Vf(x*)"s% + 15 'B,6*
subject to Vg(x*)78% = —g(x*),

and chooses A* ‘! to be the optimal multiplier vector for this program. By is a standard
rank two update approximation to /,, with a modification which assures that the B,
remain positive definite.

Tapia [10], [11] shows that Powell's choices of 8% and A*"! can be obtained by
applying a structured quasi-Newton method to the system

(1.5) I(x,A) =0, Lix,AY=0
That is, x**' and A**! are obtained from the equations

B. Vg(x")][s'j] _ —ux*,A*)]
Veix“)" 0 1L —ex™ T
(1.7) AT =ak 45 3

(1.6) [

with x**' given by (1.3). Here again B, is an approximation to I,,, so that the
(n+m)x(n+m) matrix in (1.6) is a structured approximation to the Jacobian matrix
for the system (1.5). It is easily seen that the solutions to (1.6), (1.7), given by

(1.8) AR = (e )TBL Vel ) g ~Veix*) B Vi(x*)),
8% = -B. {1 -Vg(x"Vg(x") B, ' Vg (x*) 'V (x*) B 1Vf(x")

(1.9)
-B.'Vgix*" \Vgx*) B, ' Vg(x*) 'g(x*),

also satisfy (1.1) and (1.2). In addition to the formula (1.8), Tapia presents a number
of other possible updates for A, preferring, for theoretical reasons, a double update
of A.
In [1] the authors have considered a variation of the system (1.5) in which the
Lagrangian function /(x, A) is replaced by a more general Lagrangian M (x, A) which
is quadratic in A. The purpose for introducing this generalization was to obtain better
convergence from poor starting points. Locally, however, the quasi-Newton equations
derived from M(x, A) are nearly identical to those of (1.6).
The local convergence of these methods has been investigated by a number of
authors. Before reviewing their results, we point out the distinction between Q-
superlinear and R-superlinear rates of convergerce and the difference between the
convergence rates of the vector {(x*,A“)}and = - :onent {x*}. Recall that a vector
sequence {v*} converges R-superlinearly to v nly if the sequence {jv* ~ v*|}
is bounded by a sequence which converges (-su_ ‘inearly to zero. Because an
R-superlinearly convergent sequence need not bz even Q-linearly convergent, R-
superlinear convergence by itself is computationally meaningless. It is also the case
that the Q-superlinear convergence of {v*} implies only the R-superlinear convergence 1
of its components. (See Tapia [10, section 8) for a more detailed discussion.) Since |
A**! depends only on x* and not on A%, to be most effective the structured quasi- '
Newton method should yield Q-superlinear convergence of the sequence {x*}.
The major convergence analyses center on how well and in what sense the B,
generated by (1.4) approximate the Hessian of the Lagrangian function at (x*,A*),
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the optimal solution pair. These analyses are based on similar studies of the uncon-
strained problem. In the latter case extensive use is made of the Broyden-Dennis-Moré
analysis of the quasi-Newton update formulas and the Dennis—-Moré characterization
of Q-superlinear convergence. (See Dennis and Moré [4] for a survey of these results.)
This characterization shows that Q-superlinear convergence in the unconstrained case
occurs if and only if

|(Bx —V2f(x*))8*| |

l*|

where sz(x*) is the Hessian of the function to be minimized, 6 is the step generated,
and B, is the approximate Hessian.

For the constrained case Powell {9] develops a procedure for updating the B,
and shows that, under the second order sufficiency conditions, the resulting method
is at least R-superlinearly convergent in x. He also provides a condition related to
(1.10) which is sufficient for *‘2-step’ superlinear convergence. In particular, for the
projection matrix

(1.10) 0,

P(x)=TI-Vg(x)(Vg(x)"Vg(x))'Vg(x)",
Powell shows that
IP(*)(Bi — L. (x*, A%)P(x*)8}]|

(1.11) o7 -0
is sufficient for
lxk+1 _x*l
m—)(}.

Powell was not able to show that his method satisfies this condition, however.

Also under the second order sufficiency conditions, Han [6] demonstrates the
Q-superlinear convergence of {(x*, A*)} when a form of Greenstadt’s update is used
in (1.4). However, Han requires the stronger assumption that [, (x*, A*) be positive
definite in order to obtain the Q-superlinear convergence in (x,A) for the BFGS
update. It should be noted that Greenstadt’s method is not computationally attractive,
since it almost always performs poorly in spite of its theoretical properties. To
guarantee that /,,(x*, A*) is positive definite requires the addition of a penalty term
to the Lagrangian, a computationally unattractive option,

Tapia [10], [11] and Glad [5] obtain Q-superlinear convergence in (x, A) for
L. (x*, A*) positive definite. Tapia [10] obtains the stronger result of Q-superlinear
convergence in x but at the cost of an additional update of A at each step.

In this paper we first characterize Q-superlinear convergence in x for these
methods (Theorem 3.1). The characterization is a natural generalization of the Dennis-
Moré result (1.10). Simply put, it states that Q-superlinear convergence in x occurs
if and only if

[P(*) By — 1, (x*, A*)81]
6%

(1.12) =0,

where P(x) is the projection matrix given above. Note that (1.12) does not contain a
post-multiplication of B, —/,,(x*, A*) by P(x*) as does (1.11), and hence, it takes into
account the action of By —/,,(x*, A*) off of the null space of Vg(x*)7, which (1.11)
does not.

o —— v e e =

ik
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Using the characterization (1.11), we then show (Theorem 3.2) that Q-superlinear
convergence in x is obtained when /. (x*, A*) is positive definite. This is a slightly
stronger result than those previously published and reviewed above. Finally, a sufficient
condition for Q-linear convergence in x is established (Theorem 3.3). This theorem
also makes use of the matrices P(x“)(B, —I,,(x*, A*)), requiring that they be small in
norm for all k. Hence it provides a complementary resuit to Theorem 3.1.

2. Basic notation and assumptions. For the problem NLP considered here we
assume f and g are at least three times continuously differentiable and that the gradient
Vg(x) has full rank for all x. In addition we assume that NLP has a (local) solution
x* at which the second order sufficiency conditions hold. That is, there exists a unique
vector A* € R™ such that

M L(x*. A% =0,
(i) Vgx*) Ty =0, y # 0 implies v "I, (x*, A*)y >0.

For functions h:R" - R", we denote the Jacobian and Hessian matrices by Vh(x) s
and Vh(x), respectively. Here, for notational convenience, Vhix) is always written
as an n x q matrix. For functions of x and A, we denote derivatives with respect to x {
or A by subscripts; hence, [, (x, \)=Vf(x) +Vg(xIA, L., (x, A) = Vg(x), etc. i

Vectors are aiways column vectors unless transposed, the transposition operation
for vectors and matrices being indicated by a superscript T.

In the theory of constrained minimization, the projection of vectors onto the
tangent space of the level sets of the constraints plays an important role. For a given
£, the matrix

P(#)=[I-Vg(£)Vg(£) Vg(£) 'Vg(#)"]
projects vectors onto the tangent space of the smooth manifold
{x: gx)=g(X)}

at x = £. The projection onto the orthogonal complement of this tangent space will
be denoted by Q(x). Thus

Q) =1-P(x).

|+| will everywhere denote the I;-norm. In §3, it is necessary to use the Frobenius
norm for matrices. The Frobenijus norm weighted by the matrix M is denoted by |- [l

3. Necessary and sufficient conditions for superlinear convergence. We consider
the algorithm obtained by applying a structured quasi-Newton method to the system
(1.5), thus obtaining the formulas given in (1.6) and (1.7) with solutions (1.8) and
(1.9). This algorithm has the important property that 5% satisfies the linearized
constraints, i.e.,

g(x¥)+Vg(x")T8% =0,

Extending the analysis by Powell {9], we obtain a necessary and sufficient condition
for Q-superlinear convergence in x, given linear convergence and a few basic assump-
tions on the approximating matrices B,. The essential condition is that the matrix B,
must approximate the Hessian matrix /,,(x*, A*) in the sense of Dennis and Moré [3]
but only when projected onto the tangent hyperplane to the surface {z: g(z) = g(x*)}.

We assume in the remainder of this section that the B, are symmetric, nonsingular,
and uniformiy bounded. In addition, we assume that the matrices B, are uniformly
positive definite on the null space of Vg(x*)". That is, there exists 2 8 >0 such that

. &0 L e
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whenever y # 0 and Vg(x*)7y =0,

y 'Biy zBlyf?

for every k. Thus we require the B, to satisfy the second order sufficiency condition
satisfied by /., (x*, A¥) (see § 2). This assumption is slightly weaker than that of Powell
who assumes that the B, are positive definite on R" and uniformly positive definite
on the null space of Vg(x*)".

Note that with the above assumptions on the matrices B;, the matrices
Vg(x*)"B.' Vgix*) are nonsingular. For if Vg(x*)"B, ' Vg(x*)z = 0, then B, ' Vg(x*)z
is in the null space of Vg(x*)", and hence, z #0 implies the contradiction 0<
(Bi'Vg(x*)z2)"Bu(Bi'Vg(x*)z) = 2 "Vg(x*)"B:' Vg(x*)z = 0. It follows that (1.8)
and (1.9) are well-defined for x* sufficiently near to x*.

Our first result is a generalization of a result of Powell [9].

LEMMA 1. The value of 8¢ is invariant under the transformation

B, -» B, +Vg(x")UTE§k,

where U is any n X m matrix such that both B.and Vgix* )'B;! Vg(x*) are nonsingular.
Proof. 1t follows from (1.9) that the lemma is true if the matrices

Ay =B ' Vg(x")[Vg(x*)B ' Vg(x")]!
Ar=B:' - Bi'Vg(x")[Ve(x*)"B, ' Vg(x*)] 'Vg(x*) By

are independent of U. The assumptions on U allow the use of the Sherman-Morrison-
Woodbury formula (see, e.g., Ortega and Rheinboldt [7, p. 50]) to express B, ' as

B' =B.' - B.'Vg:" I - UB'Vgx)] 'U'B. .

Substitution of this expression into A; yields

P

and

A, =B ' Vgx")[Vg(x*)Bi'Vg(x“)] !,
which establishes the result for A,. For A,, note that

A:=[I-A,Vg(x*)1B;".

Again using the expression for B;' yields the desired result.

It follows from the assumptions made on the B, that if U = yVg(x*), where y is
a sufficiently large positive constant, then the hypotheses of the lemma are satisfied.
It should also be noted that the value of A**' is not invariant under the given
transformation in B.. Thus, a variety of choices of A**' give rise to the same value
of 5% (as demonstrated by Tapia in [11]). However, it is easily seen that the first order
necessary conditions and equation (1.8) imply that if {x*}- x* then {A** '} > A*. 1

For convenience, we now write (1.9) in the form

(3.1) -Bi8% = V. Vf(x*) + Wig(x").

‘ We note that the two vectors on the right-hand side are conjugate with respect to
Bi';infact, VIBi'W, =0. Letting P: be the projection matrix at x* defined in § 2,
we see that

(3.28) Pk Vk = Pk,
(3.2b) ViP. = Vi,
(3.2¢0) P.W, =0.
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The next lemma is also a modification of the results of Powell. Two positive
sequences, {s"} and {r"}, which converge to zero are said to be of the same order if
there exist positive constants ¢, and c; such that for k sufficiently large,

Ir*|
%

1A

Is*]
LEMMA 2. Suppose {x*} - {x*} with a linear rate of convergence. Then the sequences
{1651, {Ix* ~ x*}}, and {g(x“)| +|P.Vf(x* )} converge to zero and are of the same order.
Proof. Using Lemma 1 and the properties of the B,, we see that by choosing y
sufficiently large we may replace the B, by B, for which B and B;' are uniformly
bounded and positive definite. The change does not affect the value of 8% or the
relations (3.2). Now using (3.2b) and (3.1) there exists an a; >0 such that

165 arfig(x )|+ P VA ).

(3.1), (3.2a), (3.2¢), and the linearized constraint equation yield the existence of an
a2>>0 such that

A

) Ca.

{lgx“) + [P Vf ") = aal

Thus, {{5%]} and {{g(x*){ + [P Vf(x “)|} are of equivalent order. That {{5 ]} and {{x* — x*}}
are of the same order follows from the consequence of linear convergence

|5k
I«\'k _L*‘_S_l+r,

1-r=
where r <1. This completes the proof.
Now let {G,} be any sequence of matrices satisfying
(i) Gkal:___lx(qu»l,Ak&l)_lx(xk’hk‘ﬂ)’
(ii) Gy~ L (x*, A%).
For example, G could be chosen as
1
G, =I L (x* +18%5, A% 1) dt.
0
LEMMA 3. Assume {x*}- x* linearly. Then there exists an a >0 such that
lx**! — x*| = a[|55 ] +|Pu (G — BL)5%)).

Proof. By Lemma 2 there exists an % >0 such that

3.3) I = x* = pllg(x* O+ [P VD
Now
(3.4) g Y =gx*)+Vg(x")T8 + 06 = 08P,

From (i) above and (1.3),
(Gi - B8% =L (x*"', A%,

k41

Using the fact that P, Vg(x™" ") = 0, we obtain the identity

(3.5) (Pyo1~ PGy - B))8% + PGy - B8 = P, Vf(x* ).
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The smoothness assumptions on g(x) assure that
(3.6) Pi.i— P =0(5%))

and the lemma follows from (3.3)-(3.6) and the uniform boundedness of the G, and
the Bk.

We can now state and prove the necessary and sufficient conditions for Q-
superlinear convergence for the structured quasi-Newton method as applied to the
system (1.5).

THEOREM 3.1. Let (8%, 6%) satisfy (1.6) where the matrices B satisfy the conditions
stated at the beginning of the section. Suppose {x"*}-x* linearly. Then {x*}-x*
Q-superlinearly if and only if

_ * )k k
(3.7) llm lPk(Bk Ixx(kx ’ A ))sxl=
k-0 lax l
where P, = - Vg(x*}Vgx*) Vg (x*)) Vg (x*)".

Proof. Let {G,} be a sequence of approximations to /,,(x*, A*) as defined above.
Clearly G, can replace /,,(x*, A*) in (3.7). Now suppose (3.7) holds. Then by Lemma
3

0,

It —x* = o(|6X)).

But by Lemma 2 {|5*|} and {|x* — x*|} are of the same order; hence there is a constant
a >0 such that

k+1
_x*lsa-
*l =

k1 x| . o(|8%))
83| 83l
which demonstrates Q-superlinear convergence.
For the converse, suppose s{x“} x* Q-superlinearly. Using Lemma 2 and (3.5),
we have that, for some >0,

|Pu(Bi — Gi)8% + (Pesy — P)(Bi — Gi)8 5| + g (x* )| = mlx* ! — x|,
which, together with (3.4) and (3.6), imply that
‘Pk(Bk_Gk)S:l< lxkﬂ~x*|

Ix |

Ix* —x

|5E| =7 |6k| +0(|8:|)
Again using Lemma 2, we have
P, (B -G )lez xk+l_x* . xk+l_x¢
i k|8k| : |§ﬂ'| TH ‘+0(|8:|)§11'|F§:T|+0(I55|)-

Letting k - o (and hence |5%} > 0) gives the desired results.

We note that if f(x) is augmented by the penalty term cg(x) g(x) with ¢ a large
positive constant, then the second order sufficiency conditions imply that the Hessian
of the zugmented Lagrangian is positive definite at (x*, A*). Moreover, it is easily
shown that the formula (1.9) is unchanged by this added term; thus the only effect is
in the update formula (1.4). If, as is common, the B, are chosen to approximate
L.(x*, A*) in the sense that

(3.8) B8t =y =L A Y L (x5 AR,

then the assumption that /.. (x* A*) is positive definite makes the update formulas
which preserve positive definiteness, such as the DFP or BFGS, natural candidates

et o e h
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for use in this scheme. The next theorem shows that Q-superlinear convergence is
achieved in these cases (¢f. Han [6), Tapia [11]}, and Glad [5]). The following lemma
is important for our proof.

LEMMA 4. Let Bi.1 be derived from B, by either the DFP or the BFGS update
with y* given by (3.8). Assume that l,,(x*, A*) is positive definite and {x*} converges
linearly to x*. Let B¥., be generated from B, using the same update formula as for
By, but with y* replaced by y*, where

vesLat LAY - Lt At

Then
(3.9) 1B~ BY. S acix* AR D, (A%,
where a is a constant independent of k and

(A, M A )y =max {Jx A - AN =k, k +1).

'i
|
|
i

Proof. We prove the lemma for the BFGS update. The proof for the DFP update 1
is similar but more laborious. From the definitions of y* and \ * we have 3

y - y* = (Vg(x* H-Veu N T -a%), D
and thus, there is a constant 8, such that ;3
v -y =Bl8s I T =A%,
From the assumptions there exist positive constants n,, 0. such that for large k
e znell = malail,
wNTE zmlsil,  y¥=nalstl
For the BFGS update,

B..,_ Bt <WEY G W ey ]
(y" T8y 8%

from which it follows that

3ly* Uy *Hi8xlly* ~ y*|
FRYHITEEH
Inequality (3.9) follows immediately.

THEOREM 3.2. Assume .. (x*, A*) is positive definite. If the B, are obtained by
either the DFP or BFGS formulas with y* defined by (3.8) and if {x*} converges to x*
linearly, then the convergence is Q-superlinear.

Proof. The proof follows the lines of argument used in unconstrained optimization.
Let y* and B¥,; be as defined in Lemma 4. From our assumptions x* is an uncon-
strained minimum of /(x, A*) and hence the results of Broyden, Dennis and Moré [2]
for the unconstrained case can be applied to obtain the fundamental inequality:

1Besi~BEa = §3ﬁn(nz/m)2|)\"”—)«*l.

(3.10) IBEer =l (x* A®lae S{(1-c82)" 2+ @y (", x WBi — L (x*, A®)llna
k+1

+azd(x“, x4,
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where a, and a; are constants independent of k,

G x*y =max {1~ x*|, Ix* —x*|},
. IM By — L (x*, A*))85|
O =

TIB — L tx*, A% lM TS
M =1, (x* A% 13

and the M-norm, |Qlls, stands for the Frobenius norm of the matrix MQM. The
triangle inequality can now be used with (3.9) and (3.10) to establish

A
\a

) 1By oy~ b (x*, A Mg {1 ~ €02 + @36 (x* "7, x*WIBi — Lex (x*, A*)m

(3.11
+aao((x“ LA, (o Ak,

where B,., is the DFP and BFGS update of B; and ¢ is defined as in Lemma 4.
Since {x*} converges to x* (and hence {A*} converges to A*) it follows that {||B; —
L. (x*, A%)lae) bas a limit (Dennis and Moré {3}). If the limit is not zero, then (3.11)
implies &, - 0; if the limit is zero then |B, — I, (x*, A*)|m = 0. In either case we have

_ * ) ¥\ sk
i (B~ b e*, A)85_

k-sc0 Isfi -

Since the projection matrices P(x*) are bounded, Theorem 3.1 can be applied to
establish the Q-superlinear convergence.

Theorem 3.2 rests heavily on the assumption that [, (x*, A*) is positive definite.
In theory, I, (x*, A*) need only be positive definite on the null space of Vg(x*)".
Nevertheless, most implementations of the quasi-Newton approach use updates (such
as BFGS) which maintain positive definiteness of the B, (with some ad hoc scheme
to assure that (y*)78% is positive). It remains an open question as to whether Q-
superlinear convergence can be guaranteed with these approaches.

In the previous theorems, linear convergence of the {x*} is assumed. However,
if the bounded deterioration inequality (3.11) holds, then linear convergence can be
achieved by requiring |x® — x*| and |Bo - l..(x*, A*)| to be sufficiently small. As shown
above, (3.11) holds when /,,(x*, A*) is positive definite. Without the positive definite
assumptions the usual conditions for linear convergence require that {By — [, (x*, A *){
be small for all k. (See Han [6] and Tapia [10] for the relevant results.) In the next
theorem we relax this restriction by showing linear convergence under the requirement
that [P(x*)(B — L.(x*, 1**))| be small for all k. This theorem further illustrates the
significance of the projection operator in the quasi-Newton theory for constrained

minimization.
THEOREM 3.3. Let the B, satisfy
IBi'|=n
for some n =>0. Then there exist positive constants ¢ and & such that if
(i) " -x*<g,
(i) [P(x*}(Bi — L (x*, A" <e forall k=0,

then the sequence {x*} generated by
(3.12) = - B GR, A(x ),




170 PAUL T. BOGGS. JON W. TOLLE AND PYNG WANG
where
(3.13) Al = (Vg "B Ve Mg - Vg "B Bfx ),

is well defined and converges linearly to x*.

Remark. The iteration (3.12)-(3.13) is equivalent to (1.6)-(1.7), but this form
makes the proof easier.

Proof. As demonstrated earlier, it follows from the assumpticas that for some
>0 and |x —x* <& (Vgx)'B,'Vg(x) ' exists and is uniformly bounded. Thus,
for |x° — x*| < £ x" is well defined. Since A, (x*)=A* for all k, we have

Xl ‘X* = .X“—.Y*—B() ll,(x", .\()(.\’U”
=Bo ' {Bo— L (x* A%) = Vg(x ")V A\ T Hx® ~ x*) + h°(x"),

where VAo(x*) denotes the Jacobian of Aq at x =x* and (A°(x")|=a’x’ - x*P, «

constant. From (3.13) we see that

VAolx*)T = (Vg(x*) "By ' Vg(x*)) 'Vg(x*) B (Bo— L (x*, A%)).

0

Therefore,
ix'—x* =B W - Vg(x*NVgx*)"Bs' Vg (x*) 'Vg(x*)"B;"}
“(Bo— L (x*, A*) - x° = x*|+ a%x® = x*{.

Let V¥ =1-Vg(x*)(Vg(x*)"B:'Vg(x*) 'Vg(x*)"B;' and note that as in (3.2b),
VEP(x*)= V¥. Thus

Ix' —x*=|Bo' |- |VE [P (Bo— L (x*, A% [x° = x*| +ax"—x*2

From our assumptions, it now follows that the |V¥| will be uniformly bounded by,
say, f>0. We now choose £ and ¢ small enough so that nBe +a’t=p<1, and
therefore, |x' —x*|=p|x°—x*|. The desired result can now be proven by induction
since the sequence {a“} can be uniformly bounded.

We observe that in the above theorem, condition (ii) could be replaced by

IP(x*)(Bi — L (x*, A*)| <e,
which is consistent with the form in Theorem 3.1.

Acknowledgment. The authors would like to thank R. A. Tapia for his helpful
comments.
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